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O ne of the strongest forces in the contemporary
growth and evolution of mathematics and math teach-
ing is the power of new technologies. In math, comput-
ers have fostered entirely new fields. In education, they've
raised the importance of certain ideas, made some prob-
lems and topics more accessible, and provided new ways
to represent and handle mathematical information, af-
fording choices about content and pedagogy that we've
never had before.

But such choice imposes the burden of judgment. Not
everything that can be done should be done. Student
learning is affected by a complex system: teachers, edu-
cational theories and beliefs, parents, curricula, students’
interests and aspirations, resources, cultural expectations,
technology, and more. There is much to say about all of
these considerations, but the impact of each cannot be
fully understood except in relation to the others. This is
especially true of technology, which partially explains why
there is no single, universally accepted view of the best
use of calculators and computers in classrooms.

Moreover, the right questions about technology are not
broad ones about which hardware or software to use,
but about how each works in a certain curriculum, right
down to its effect on how individual problems are posed
to the student. Each of these is its own unique case to
judge as effective and appropriate or not. The need to
make decisions at that level of detail is unsurprising if
we think of computers and calculators the way we think
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of pencils. It is the problems that are posed, not the tech-
nology with which they are attacked, that make all the
difference. With computers, as with pencils, some prob-
lems are great and some are a waste of time.

With technology, what changes is the pool of problems
to choose among and the ways they can be presented.
Some problems are too hard to be posed in a pencils-
only classroom. Some lessons require students to experi-
ment with certain mathematical objects and see how
they respond. Some require visual representations—
graphs, diagrams, geometric figures, moving images—
that respond to students’ questions, answers, or com-
mands.

In the early grades, physical manipulatives often pro-
vide these visual and experimental supports for children.
They serve as temporary physical stand-ins for math-
ematical ideas, objects that the children can see with
their eyes and manipulate with their hands while they
learn to see and manipulate the mathematical ideas with
their mind’s eyes and hands. In the higher grades, many
mathematical ideas just don’t have such physical mod-
els. Computers can provide interactive “virtual
manipulatives” where physical devices do not exist. As
always, the value of a tool depends on how it is used. If
physical or electronic manipulatives are well designed
and well used, they can increase the variety of problems
that students can think about and solve.



But what zs good use? Research fills in parts of the pic-
ture, but can’t give all the answers. For one thing, goals
differ from district to district and even from classroom
to classroom. Clarity about goals and good teacherly judg-
ment are both necessary components of decisions about
the use of any teaching method. This paper aims to help
you decide how you stand on whether, when, and how
to use computers or calculators, and how to maximize
the gains and minimize the risks of their use. It also aims
to offer you strategies for talking with parents about the
choices you make.

Some Ways to Decide What is Good Use

The single most important thing that research shows is
that what really matters is not the use of technology, but
how it is used. (This is likely to seem obvious to any
teacher but is, alas, not the way the debate tends to be
carried out in public arenas.) Despite the research, no
document can prescribe good or bad practice, because
so much remains a matter of personal and community
judgment. Even so, there appears to be enough agree-
ment, even between those who love technology and those
who hate it, to come up with some reasonable principles
that may help you make your own decisions. Below are
six such principles for thinking about technology use in
math classrooms. They all point to the need to examine
the purpose of the lesson—that is, the nature of students’
current needs—and how the technology fits with that
purpose.

While curriculum is the real determinant of what math-
ematical ideas students gain, from the perspective of pro-
viding students with mathematically rich, responsive
environments for encountering, representing, experi-
menting with, and reasoning about mathematical ideas,
computers generally offer greater versatility than calcu-
lators. Sheer screen space alone makes possible a broader
range of mathematical ideas, with more ways to repre-
sent and manipulate them. That versatility also accom-
modates a greater variety of learning and teaching styles,
offering such educational settings as puzzles, microworlds
(environments designed specifically for education, but
tool-like in their structure), tutoring systems, mathemati-
cal programming environments, visualizations in math-
ematical domains from statistics to calculus, geometric
construction tools, and more.

Despite the variety, mathematical fidelity and power, and
educational appropriateness of many computer-based
tools, economic and other reasons have moved calcula-
tors into schools and curricula on a scale that is, so far,
unmatched by computers. Controversy about the uses

of technology in mathematics classrooms has therefore
also tended to focus primarily on calculators. The em-
phasis in this paper will be proportionate not to the op-
portunities, which seem vastly greater with the computer,
but to the current classroom realities, in which calcula-
tors, at least for the moment, still dominate.

“Higher-Order” or “Lower-Order” Skills? Choosing a
Genre of Technology

A very readable 1998 report by Educational Testing Ser-
vice (ETS) outlines the debate on technology’s effective-
ness and concludes that the use of computers to teach
higher-order thinking skills such as puzzling, reasoning,
and problem solving was “positively related to academic
achievement in mathematics and the social environment
of the school.” Furthermore, “use of computers to teach
lower-order thinking skills [e.g., learning facts] was nega-
tively related” to the same two variables. It also shows
that the nature, not the frequency, of school use was the
critical factor.

Most people agree that learning facts is necessary—note
that the ETS study ascribes harm not to the learning of
facts, but to the use of technology to serve that goal.
And most teachers agree that developing rapid, easy ac-
cess to useful facts (sometimes called fluency) requires
practice. Computer games are sometimes used to pro-
vide drill without the mindless monotony students some-
times experience on worksheets. But whatever motiva-
tional or other value computers might seem to provide
for achieving that practice, they are apparently 7oz the
way to go. The research did not say why computers in
support of lower-order thinking was harmful, so we can-
not draw a definitive general principle other than “don’t
use computers as flashcards.”

What does the distinction between using tools for higher-
order and lower-order thinking rez/ly mean? The answer
involves several factors. Some of what is higher-order
thinking at one stage becomes lower-order at a later stage,
so students’ developmental level and mathematical back-
ground are part of the picture. The nature of the prob-
lem matters, as well: if one pays for a 75¢ item with a
dollar bill, there is just more to think about in deciding
how many ways the change can be given than in decid-
ing what change to give.

The technology matters, too. Students are in a different
position when the software poses problems they must
solve—tutoring, drill software and many games are like
that—than when the software waits for the students to
formulate (and solve) the problem. Word-processors sit
blankly, waiting for the writer to have ideas, and to ex-
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press, develop, and edit them. The real work is being
done by the writer. In a similar way, there are math-
ematical environments—they might be dubbed collec-
tively “mathematical idea-processors”™—that a/so sit and
wait for the student-mathematician to have ideas, and
to express, develop, and edit them. These include pro-
gramming languages, dynamic geometry software like
Geometers Sketchpad or Cabri, spreadsheets, symbolic
algebra calculators, and the like.> As in a good writing
class, the teacher and the curriculum play a central role:
students don't just “have” ideas, but need some good
problems to work on, some skills and ways of thinking,
a developing arsenal of strategies and techniques, facts,
and guidance. But with “idea-processors” like word-pro-
cessors, spreadsheets, programming languages, and ge-
ometry construction software, and with certain
microworlds especially tailored for educational pur-
poses—the statistics program Fathom, for example—the
quality of the problems can be under the control of the
teacher and the curriculum, not the software designer.’
Moreover, the problem-solving approach can be under
the control of the student, with guidance from the
teacher.

Is idea-processing the only recommended use of tech-
nology? No. While the ETS study warns against a focus
on practicing lower-order thinking skills, some brilliant
puzzles and games are clearly aimed at higher-order
thinking, even though they do pose the problems and
leave kids merely to solve them. And for some students
under some limited circumstances, there is even a role
for software that gives practice with elementary arith-
metic skills.

The Genre Principle: Good decision making requires us ro
be aware of these different roles for technology, to think clearly
about our own classroom goals, right down to the particu-
lar needs of particular students, and to choose technologies
expressly to further those goals, rather than merely adding
technology to the classroom in ways that may be attractive
but tangential or even detrimental to the goals we set.

Look at the Purpose of the Lesson

A well-designed lesson has a central idea and focuses stu-
dents’ attention on it, without distraction by extraneous
ideas or procedural details. So, for example, when middle
schoolers are asked to compare the ratio of two mea-
sured quantities with the ratio of two others, the likely
purpose of the lesson is to develop their ideas about ra-
tio and proportion. With #hat purpose, the actual me-
chanics of performing the many calculations involved
could constitute a distraction. Many teachers as well as
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education theorists readily agree that in situations like
this, using a calculator to avoid long decimal divisions
makes sense. The lesson is not about division, so the cal-
culator doesn’t short-circuit it; the lesson is about ratio,
and electronic aids in calculation help focus it by reduc-
ing the effort spent on computation.

Of course, what bogs students down in computational
details depends not just on the size of the computation,
but also on what the students find easy to do, so judg-
ment is still required. For six-year-olds, figuring out how
many inches are in 20 feet could be an excellent problem
to ponder without a calculator. Alternatively, it could be
one difficult and distracting step in a process in which
some other step is the current focus of their learning. In
this case, calculator use might reasonably be warranted.
By the time students are ten they may be able enough to
multiply 12 times 20 in their heads so that the calcula-
tion process is not a real distraction from the point of the
lesson, even if it is 7ot the point of the lesson.

What irks people is the habit that some students develop
of pulling out their calculators to divide by 10 or 100, or
to perform other such calculations that virtually every-
body should be able to do in their heads. With very few
quite extraordinary exceptions, people who actually need
to use a calculator for tasks like these have been handi-
capped by inappropriate education, not by any fixed limit
to their “native” ability.

The Purpose Principle: Allow calculator use when compu-
tational labor can get in the way of the purpose of the lesson.
When learning how to perform the computation is the pur-
pose of the lesson, calculators may be a bad idea.

Look at the Nature of the Thinking Being Asked of
Students

In the example above, allowing technology to perform a
computation freed students 7oz to think about the com-
putation so that they could focus attention on some other
aspect of the problem. But sometimes, even if some pro-
cess such as computation is not the point of a lesson,
analyzing the process can be a natural route to under-
standing (rather than just memorizing) the main point.
Here is an example. Many curricula ask students to know
that rational numbers have repeating or terminating deci-
mal expansions. Take 30/7 as a case in point. Dividing
30 by 7 on my calculator, I see 4.285714286. My
computer’s software calculator gives me a few more
places—4.28571428571429. Even though both round
the last digit, the repetition is quite noticeable. In a les-
son whose goal is to find the pattern, such computational
tools are much more convenient than hand-calculations,



but they give no direct insight into what underlies the
repetition. Why do rational numbers have repeating or
terminating decimal expansions? Opinions may differ
about whether this fact about rational numbers is im-
portant to learn, but if it is considered an important idea,
then the traditional division algorithm is a useful way to
move beyond rote and help students understand why it
is so. Here is a close-up look at the minute details of how
the decimal expansion of 30/7 is worked out using the
division algorithm.

4.28571428
7 )30.00000000 Using the familiar goes-into
-28 and bring-down language, 7
20 goes into 30 four times, leav-
-1 4 ing a remainder of 2. Bring
60 down a zero. Seven goes into
=56 20 two times and leaves a re-
_gg mainder of 6. After a few
50 more steps we see . . .
-49
10
-7
30 another “7 goes into 30.”
-28
20
-14
60

Why? Because either we reach a point where there’s no
remainder (and the decimal terminates) or we get a re-
mainder. As only six possible remainders exist, they must
somehow repeat. Whenever they do, a brought-down
zero starts a process we've already seen before. The re-
mainders must cycle, and so the quotient digits repeat.

Although the example is only about 7 and 30, the reason-
ing is completely general—it does not depend at all on
the numbers that were selected. At each step in the divi-
sion, either there is 7o remainder and the decimal termi-
nates, or there is a remainder. When dividing by 7, re-
mainders must be smaller than 7. If there is no remain-
der (if the “remainder” is zero), the division terminates.
So only 7—1 non-zero remainders are possible. When the
division does continue, only zeros are “brought down,”
so the 7z will be divided into at most #—1 different num-
bers (all multiples of 10). Therefore, in at most 7—1 steps,
the process must either end or repeat a division that was
performed earlier with exactly the same steps following
it—a repeating cycle.

Because computational support can ease the job of ob-
taining initial results and may reduce annoying errors
that would obscure the pattern, it might be of use at the
stage at which students are just generating a conjecture.
But understanding the reason for the pattern may require
them to perform the division algorithm at least once in
order to see the intermediate results. For this goal, the
calculator is no longer a help but a hindrance.

The Answer vs. Analysis Principle: The Purpose Principle
said that calculator use was okay when the lesson’s purpose
was better served by getting quickly to the answer rather
than laboring over or being distracted by the computation.
At other times, even when the process of calculation is not
the point of the lesson, stepping through that process and
seeing the intermediate details explains the results that it
produces. At such times, a technology that obscures the de-
tails and skips directly to the answer is no help.

Look at the Role of the Technology in the Lesson or
Activity

An even more general truth is lurking here. Anything that
influences how a problem is solved—for example, using
paper and pencil to work a computation instead of per-
forming it mentally, or using ruler and compass to work
a geometry problem instead of using either dynamic soft-
ware or a freehand sketch—highlights certain aspects of
the problem and suppresses others. Only when one is
clear about the learning goal of the problem can one make
a clear decision about what technology (mental, paper
and pencil, electronic, etc.) to use. For example, while
using the standard paper and pencil algorithm for divi-
sion seemed an excellent way to understand why deci-
mal expansions of rational numbers repeat or terminate,
using the standard paper and pencil algorithm for mul-
tiplication (or using the calculator, for that matter) prob-
ably does nor give much real insight into why multiply-
ing by 10 moves the decimal point or adds a zero at the
end. Using the calculator might establish the pattern well
enough to allow students to feel comfortable with it and
be fluent at using it as a “fact.” But if insight into how it
works is desired, a different representation may work—
perhaps a physical, visual, or software representation of
the reasoning,

03x10=3x0.1=3x1/10x10=3x1=3

or perhaps that reasoning presented just as is, purely sym-
bolically. Or one might appeal to a demand for consis-
tency in notation: if five tens is written 50, and nine tens
is written 90, then thirty-six tens should be written 360,
and 4.3 tens should be between four tens and five tens
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(with details to be worked out as in the case of 0.3 x 10).
Again, a visual representation might help, and that rep-
resentation might usefully be electronic and interactive,
but a tool to ger the answer is not what is needed.

The same is true in algebra. Students might investigate
and then make a conjecture about a pattern of algebraic
computations, using a calculator or computer to ease the
labor in performing the symbolic manipulations. The
technology might show them, for example, that

Further experiments might suggest a pattern, but how
do they learn why this pattern holds? A calculator just
gives the answer; insight and understanding lie in the
intermediate steps that one takes when multiplying by
hand. One misses them entirely when looking only at

5
-1
u:x“+x3+x2 +X +1
(x-1)

answers produced by machine.

Here’s one way of writing down what the calculation

looks like by hand.
x-D(x*+x+x%+x+1D)=xx*+2°+x2+x+1)
+ I+ P+ 2+ x+ 1)
This breaks the calculation into two parts, multiplying
by x and multiplying by —1. Although keeping track of
the computation might require a by-hand component,
the actual work is all mental, and the mental demands
are absolutely basic to even the most minimal under-
standing of algebra. Students must know (and be com-
fortably fluent with) the effect of multiplying by -1 and
the effect of multiplying by x. The next stages are straight-
forward. Multiplying by x gives
a0+ x
and multiplying by -1 gives
(=x*=x*=x2=x-1).
Adding these two expressions eliminates most of the
terms, leaving only x°— 1.
Even though this is only one calculation—and we're told
all the time not to base a proof on one example—it is
immediately apparent that the way this example works
is general enough to show us how any such calculation
works, and to prove the conjectured pattern. Not using
the machine helped.
By contrast, 7he Teaching Gap and the related TIMSS
(Third International Mathematics and Science Study)

video give an excellent example of where a dynamic im-
age, made practical by technology, supports student prob-
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lem solving.4 In summarizing the previous lesson about
the area of triangles, a teacher shows his eighth-grade
students an interactive image of a triangle with its base
lying fixed on one of two parallel lines and its vertex
lying on the other. As he moves the vertex (A) back and
forth, he remarks about the fixed base and unvarying
height, and reviews the main point that all such triangles
must therefore have equal area.

He then moves to the new problem of the day, present-
ing it for the class to work on independently with no
instruction about approach. “The boundary between two
farmers’ land (dark line in the illustration below) is bent,
and theyd both like to straighten it out, but each wants
to keep the same amount of land. Solve their problem
for them.”

Various solutions emerge. Some students recall the im-
age of a triangle bounded by two parallel lines and see
how to use it in this problem. They see the boundary
line as two sides of a triangle, draw a parallel to the third
side through the vertex, and adjust the figure—sliding
that vertex along that parallel all the way to one side—to
solve the problem. In this class, the image was a teacher-




manipulated demonstration, but tools like Geometers
Sketchpad and Cabri are age- and content-appropriate
“manipulatives” that let middle- and high-school students
perform experiments of this kind on their own.

Geometry tools, spreadsheets, symbolic calculators, and
graphing tools can all be used to solve problems, but
their value in that role is ephemeral: over time, the tech-
nology changes and students will not have those par-
ticular tools to use any more. In another role—helping
students develop new and powerful ways of looking at
problems, helping them build mental models, acquire
generalizable and flexible skills, and so on—these tools
can foster learning that does not evaporate as new prod-
ucts are developed. Students who watch carefully as they
drag and distort geometric objects onscreen begin to learn
how to perform the same kinds of experiments in their
minds.

Even for elementary school students working with simple
arithmetic calculators, there are activities, such as the
“broken calculator” activities, that help students focus
on and analyze the structure and elements of arithmetic
and gain skills along with understanding, rather than
have the calculator replace their thinking. The broken
calculator activities are essentially puzzles in which stu-
dents must figure out how to perform certain tasks on a
calculator that has one or more non-working keys. At
different stages of students” arithmetic learning, prob-
lems like “How can we multiply 20 times 50 if the zero
key isn’t working?” or “How can we multiply 5 times 12
if the only working number keys are 5 and 72" or “How
can we get 6 on the calculator if the only working num-
ber key is 52” can be challenging, fun, and instructive.

The Who Does The Thinking Principle: The Answer vs.
Analysis Principle asks whether the technology is being used
to solve a problem or to help students think about a prob-
lem, analyze a process, generate a proof. More generally, we
might ask—specific to a lesson or even to a particular prob-
lem—uwhether the role of the technology is to replace a ca-
pacity that the student might otherwise need to develop or
to develop the student’s capacity to think, independent of
the technology. Some of each may be warranted, but good
use of technology depends on making such decisions con-
sciously. This focus on helping students develop ways of think-
ing about a problem—thinking that eventually becomes in-
dependent of the technology—is reminiscent of ETSs con-
clusion that using technology to teach higher-order thinking
skills was positively related to mathematical achievement,
while using it to drill lower-order skills was negatively re-

lated.

Keeping Control of Content

Technology is often said to make certain content obso-
lete. We no longer teach how to interpolate from tables
of trig functions, logs, and square roots. Maybe, argue
some, we should also ditch the division algorithm. With
calculators so common, cheap, fast, and accurate these
days, the hands-down favorite “real life” method for per-
forming a calculation like 463.75 +29.41 is to go for a
calculator if any precision is needed. Mine just said
15.76844611. To check this answer for plausibility, all I
need to do is estimate how many 30s there are in 460.
Midway between 10 and 20 looks quite good. Done. Is
more needed?

Not long ago, there was no choice; people needed the
division algorithm to get accurate answers to division
problems. Things have changed. Finding quotients with
precision now requires nothing but a calculator: zhat role
for the division algorithm s obsolete. Spending much
time in school as a hedge against dead batteries seems a
poor choice. But you've already seen that there can be
other reasons to learn the algorithm. In fact, deciding if
it should be taught isn’t obvious; reasonable people can
come to different conclusions.

In the days when we had to teach the division algorithm,
we had no need to ask what secondary purposes might
be served by the knowledge of that algorithm, and yet
you've already seen one. Standard division is also a good
first experience with infinite processes and an excellent
example of systematic approximation and successive re-
finement. Just as technology is merely one element in a
complexly interdependent system of factors including
teaching, students, and so on, ideas like the division al-
gorithm are complexly interrelated with other math-
ematical ideas. Pulling one idea out of the curriculum
may have unexpected results. This is not a case of
conservativism for its own sake. It 7s important to re-
consider old practice, and we do sometimes need to scrap
traditional content to make room for new ideas. But. . .

The Change Content Carefully Principle: Decisions about
what is or is not obsolete content must be made thought-
Sfully, attending not just to what technology can do, but to a
careful analysis of what students need to be able to do—
especially how they need to be able to reason.

Learning to Be Power-Users of Technology

As we worry about the inadequate current state of stu-
dents’ mathematical learning, let us not forget that in
the “good old days,” students, however good they might
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have been at whole number computations, were nor
broadly good at math even up to the addition of frac-
tions, let alone algebra. The majority of adults do not
report having been good at math. In fact, one of the ra-
tionales for using calculators and computers is to change
educational practice precisely because students were not
masters of the old tools like algebra.

But empowerment requires control. If students were not
masters of the old tools, it is no favor to give them new
tools that they also do not master. Sometimes students
do know enough algebra to solve a problem but still fail
to use that knowledge because they lack the fluency or
experience to use it effectively and confidently in prob-
lem solving. The same applies to electronic tools. Learn-
ing just enough about a spreadsheet to solve a particular
class of problems and then moving on or learning a few
construction tools on geometry software to illustrate a
particular collection of geometrical facts, and then mov-
ing on leaves students limping users of the tools, not ex-
perts who could whip out the tool as needed to help rea-
son about and solve a problem.

As schools plan their use of technology, they may want—
just as with any curriculum—to take a developmental
approach to tool use, an approach that chooses a limited
number of tools, introduces them early, and uses them
consistently, developing increased skill and sophistication
over the years so that students ultimately become power-
users of these tools in all of their mathematical learning.
Of course, the math curriculum must still be about the
math, not about the electronics. In a high-tech classroom
as in a paper-and-pencil one, quality rests primarily in
how much and how well students are learning to think
mathematically, but effective use of the local technology
(wood-pulp or electronic) matters, too. With paper, neat-
ness and orderliness are important, as anyone can attest
who has seen the errors students make just because they
cannot decipher their own writing. With electronic tools,
other skills are required. And with a7y technology, men-
tal skills are needed. We must be thoughtful about giving
students the skills they need to make fluent, effective use
of the new tools we give them.

We must also provide time and opportunity for teachers
to become fluent with the tools so that they can be flex-
ible, use spur-of-the-moment good judgment in their
classrooms, and not feel constrained by the tools or stilted
by a lack of confidence in their ability to use them. This
was another major but not surprising conclusion of the
ETS report: teacher professional development in tech-
nology—and, we add, especially around tools that sup-
port higher-order thinking skills—mattered greatly.
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The Fluent Tool Use Principle: “Touching” several com-
puter or calculator tools but not really mastering them may
do more harm than good: it costs time and teaches little.
Learning a few good tools well enough to use them knowl-
edgeably, intelligently, mathematically, confidently, and ap-
propriately in solving otherwise difficult problems makes a
genuine contribution to a student’s mathematical education.

Keeping Learning at the Fore as Change
Marches (Inexorably) On

It’s hard to resist a bargain. With technology doubling
in power and halving in cost every couple of years, our
entire society tends to run along, seduced by the possi-
bilities and driven by the momentum, barely keeping
up.

The first big wave of computers purchased by schools
wound up living in closets. That alone tells us that the
initial push for technology did not for the most part come
from the classroom. Schools are a big market, and the
drive to keep them technologically “up to date” is in the
economic interests of the makers of hardware, software,
and internet service providers. Policy—even government
policy—is often driven first by those interests. So, with
only partial control over the brakes or accelerator for this
rapid influx of technology into schools, the job left to us
as educators is to steer attentively.

Technology affords important and exciting new capa-
bilities that expand the options for what and how we
teach. But there is another side to this coin. It is easy, in
the excitement, to overlook constraints and limitations
of technology that narrow one’s vision of math and teach-
ing. For example, it is cheaper to put graphing calcula-
tors in the hands of every student than to give students
equivalent access to computers. Having bought into cal-
culators, however, can have the effect of narrowing one’s
vision of math to what can be accomplished on small
screens with graphs and their symbolic descriptions. A
great deal can be accomplished that way, and reasonable
people might choose that as what they want their math
program to accomplish, but it is equally possible to be-
come so involved in one form of graphing method that
other applications and views of algebra are forgotten.

The same is true of teaching. While some teachers enjoy
the high adventure of experimenting with novel tools,
many others feel more creative when their attention is
not divided between their craft—students, thinking, and
subject matter—and what may seem like low-level tech-
nological details. For these teachers, the advantages of a
new tool (even if they agree it has advantages) can be



offset by the retooling they must undergo in order to
use it fluently. Some of the newer curricula both estab-
lish a vision for the use of technology and provide re-
sources that help teachers gain power and fluency with
these new classroom tools.

What's to be done? Keep change under control. Provide
instruction and time for teachers to become creative us-
ers of the technology they have. Keep a clear vision of
what is desired of the technology, responsive to but not
governed by changes in what is possible with the tech-
nology. Think foremost about what you want for your
children—the goals of the particular classroom, and the
needs of each particular student—and after deciding on
your goals, then assess whether the tools are bringing
you closer or distracting you away.
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